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I. INTRODUCTION 

One of the major achievements in modem data transmission has 

been the development of fiber optical communication systems which 

transmit information through encoded light beams propagated in hair-

thin glass fibers [1]. Essentially this high data capacity technique 

has been made possible by two separate technological breakthroughs. 

The first was the invention, in the early 1970s, of low attenua

tion optical fibers below 5 dB/km. Recent laboratory results have 

yielded signal attenuation as low as 0.2 dB/km at 1.55 pm in single-

mode fibers. Systems operating at 1.3 pm have transmitted data at 

140 Mbit/sec for up to 30 km without repeaters [2]. 

The second breakthrough was the development of semiconductor light 

sources including light emitting diodes (LEDs) and injection lasers. 

Semiconductor injection lasers are ideal for many optical fiber systems, 

especially for high capacity data channels or long distance transmission 

applications, because their narrower spectral width reduces the effect 

of the intrinsic chromatic dispersion in the fiber so that the data 

channel capacity can be enhanced. Also, these lasers efficiently couple 

more power into the fibers because of their high-radiance emission 

patterns. 

In many environmental temperature ranges, however, semiconductor 

lasers are not applicable because their emission threshold is intrinsi

cally ten^erature sensitive [3-6]. To compensate for the temperature 

effect, it is necessary to ençloy circuitry which automatically adjusts 
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the driving current. At present, this leads to a shorter device life

time at higher operating temperature [7,8]. 

Another important aspect of laser thermal properties is an internal 

temperature rise caused by the diode driving current. The nature of 

heat dissipation in the laser diode is two-dimensional [9-13]. For 

continuous-wave operation, undesirable emission spectrum and mode shift 

[14-18], and an increase in threshold current [19-22] were observed 

experimentally by different research groups. 

The purpose of this work is, therefore, to quantitatively inves

tigate internal heating and its effect on the performance of conven

tional stripe-geometry double-heterostructure (DE) lasers. The effect 

on the waveguiding parameters and radiation patterns by the lateral 

gradient of the tençerature distribution will be discussed by means of 

a mathematical model. Also studied will be the threshold current 

increase and the emission wavelength shift caused by a rise in tem

perature for CW operation. 

In order to illustrate the nature of the problem under investi

gation, a brief review of semiconductor injection lasers and related 

background materials is presented in section 1(A). The problem and 

the approaches for solution are described in section 1(B). The math

ematical model is discussed in detail in section II, including the 

solutions for current spreading, electron concentration, heat diffu

sion and wave equation. A computer program based on these solutions 

is used to create a number of curves for studying the effect of tem

perature rise. The results, in comparison to existing experimental 

data, are analyzed and discussed in section III. 
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A. Review of the Semiconductor Injection Laser 

The possibility of light amplification through the stimulated 

recombination of carriers injected across a p-n junction was first 

predicted by Basov et al. [23] in 1961, and the actual lasing action 

was achieved by several research groups [24-26] in 1962. These early 

injection lasers were generally rectangular chips of GaÂs containing a 

p-n junction perpendicular to two polished or cleaved ends of the chip 

[27]. At this developmental stage, lasers were operated with a short 

pulse and very high diode current densities at an extremely low tempera

ture. Since then, the invention of heterostructures and the development 

of direct-band-gap semiconductor materials and fabrication techniques 

have improved both the efficiency of the device and the confinement of 

injected carriers and optical field in a narrow region of the device 

to such a degree that it is now possible to operate continuous wave 

injection lasers at room temperature with a threshold current density 

2 
lower than 700 A/cm . 

1. Principle of operation 

The electroluminescent diode is basically a device in which 

electrons and holes are injected into the p- and n-type regions, 

respectively, by the application of a forward bias V, as shown in 

Fig. 1.1 [28,29]. 

To reach a lasing action, stimulated emission should be achieved 

by carrier population inversion, a condition whereby the upper of two 

electronic levels separated in energy by AE = Eg - has a higher 

probability of being occupied by an electron than the lower level. 
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Fig. 1.1. Electroluminescent p-n junction operation 
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Then the probability of a photon with energy hv ~ AE inducing a down

ward electron transition will exceed the probability for an upward 

transition, or photon absorption. Light amplification becomes possible, 

therefore, when an incident photon stimulates the emission of a second 

photon with energy approximately equal to the energy separation of the 

electronic levels. 

Population inversion in a semiconductor is illustrated in Figure 1.2, 

which shows the electron energy as a function of the density of states 

in an undoped semiconductor at sufficiently low temperature for the 

conduction band to be empty of electrons. When electrons are excited, 

they fill the lower energy states of the conduction band to F^, the 

quasi-Fermi level for electrons. An equal density of holes is generated 

to conserve the charge neutrality in the material, and thus the states 

in the valence band to F^ are empty of electrons. 

Photons with energy greater than but less than F^ - F^ cannot 

be absorbed since the conduction band states are occupied, but these 

photons can induce downward electron transitions from the filled con

duction band states into the empty valence states. With increasing 

temperature, a redistribution of the electrons and holes occurs, but 

the basic conditions for stimulated emission remain defined as above 

in terms of the separation of the quasi-Fermi levels, F^ - F^ > hv. 

The threshold condition for lasing is that the gain equals the optical 

losses in the cavity at radiation photon energy. 

A unique feature of the laser diode, not present in other laser 

types, is the ability to obtain stimulated emission by minority carrier 

injection using a p-n junction or heterojunction. The efficient 
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Fig. 1.2. Electron energy as a function of the density of states in an 
intrinsic direct bandgap semi conductor 
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operation of a laser diode requires effective carrier and radiation 

confinement at the vicinity of the junction. The detailed structures 

for such an efficient confinement are further discussed in the following 

section. 

2. Structure of the device 

As mentioned earlier, the homostructure laser requires a very 

high current density through the p-n junction in order to reach the 

threshold lasing condition because the recombination region is too 

wide as a result of minority carrier diffusion. In addition, since 

the optical field exists in an inefficient waveguide of uncertain 

origin, the efficiency with which injected electrons are utilized for 

lasing transition is low. 

In a typical GaAs laser diode, the injected carrier density necessary 

18 "3 
to reach lasing threshold is about 10 cm [28,30,31] at room temperature. 

Minimizing the threshold current density requires restricting the 

width of the recombination region d by placing a potential barrier for 

minority carriers at a distance less than the diffusion length from 

the p-n junction. Also, the optical field intensity is guided by a 

built-in slab waveguide resulting from the difference in the dielectric 

constants of the heterostructure materials. 

These multilayered heterojunctions, which were first introduced 

by Kroemer [32] in 1963, later allowed a revolutionary improvement in 

carrier and optical confinement perpendicular to the junction planes. 

In the late 1960s, Hayashi et al. [33], Panish et al. [34], and Kressel 

and Nelson [35] began research on GaAs/AlGaAs heterojunction lasers 
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which resulted in significant reduction of threshold current density, 

and eventually produced lasers capable of operating continuously at 

room temperature. 

In discussing heterojunctions, it is convenient to designate the 

narrower energy gap layers by their conductivity type as n or p, and 

to designate the wider energy gap layers as N or P. These designations 

will be used throughout this work. 

In a typical DH (double-heterostructure) laser, carriers and wave

guide have the same boundaries on both sides of the recombination region. 

A schematic energy band diagram and the refractive index structure for 

such a device are shown in Figure 1.3. The DH laser made of GaAs-

A1 6a^_ As or A1 Ga^_ As - A1 Ga^ As is presently one of the most 
& i A A i JL V XV 

advanced heterostructure lasers being developed for use in optical 

communication systems. With this structure it is possible to emit 

a wavelength in the range of 0.78-0.9 jJm, depending on the mole frac

tion of AlAs in the active layer. The energy bandgap of Al^Ga^ ^As 

is shown in Figure 1.4. A GaAs system grown by liquid phase epitaxy 

(LPE) was the first junction laser capable of CW operation at room 

temperature [36]. The layer structure is either N-p-P or N-n-P, thus 

forming a symmetrical slab waveguide where ng = n^ < n^. 

One of the difficulties in fabricating a heterostructure laser is 

lattice constant matching at the heteroboundaries. The lattice disconti

nuities at the boundaries result in a number of nonradiative recombination 

centers which trap minority carriers otherwise available for stimulated 

emission. 
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Fig. 1.3. Schematic representation of a broad-area DH laser 
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Fig. 1.4. The compositional dependence of the Eg direct energy gap 
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uncertain. From [37] 
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So far, many different III-V compound semiconductor materials 

have been developed for longer wavelength injection lasers [38]. 

Ternary semiconductor alloys have been widely used in various device 

applications because of their ability to adjust the energy gap. With 

the exception of the GaAs-Al^Ga^_^As system, however, the changing 

lattice constant with composition in the ternary alloys makes it 

incessible to obtain the required performance or to fabricate the 

desired structures at a particular wavelength or bandgap energy. 

A fourth element could be added to a ternary alloy to minimize 

lattice mismatch while maintaining the desired bandgap. InGaAsP/InP 

is the most promising quaternary compound for both lasers and LEDs at 

1.3 pm, the minimum optical loss and chromatic dispersion region for 

modern high-silica fibers, but the strong inherent temperature depen

dence of InGaAsP/InP lasers appears to rule out their use at the 

elevated ambient temperatures at which many land-based communication 

systems must operate [2]. Kressel and Butler [29] as well as Casey 

and Panish [39], provide a well-sunasarized review on these III-V 

compound materials and fabrication techniques, including a discussion 

of the AlGaAsSb/AlGaSb system. 

In addition to vertical confinement with these heterostructures, 

it is also important in many laser applications that the current flow 

be restricted laterally to a narrow stripe along the length of the 

laser. This modification drastically reduces the total driving current 

for threshold. Lasers with the lateral confinement feature are called 

stripe-geometry lasers. 
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There are a number of different ways to realize these stripe-

geometry structures at the present time [39,40]. Depending on the 

lateral waveguiding mechanism, they may be classified into two different 

groups: conventional gain-guiding lasers and index-guiding lasers. 

Proton-bombarded [41] or oxygen-implanted [42] stripe lasers fall 

into the former category. In this type of structure, regions of high 

resistivity are created in the p- and P-layers either by proton-bombard-

ment or by oxygen-implantation, both of which define the boundaries of 

the stripe. A schematic of a proton-bombarded stripe laser is given 

in Figure 1.5. The driving current flows into the active layer only 

through the untreated region under the p-contact. However, the optical 

property of the bombarded region can be restored by an annealing process 

in order to prevent any increase in the optical loss for guided modes. 

Contact-stripe lasers [43] also fall into the gain-guiding laser 

category. As shown in Figure 1.6, an SiO^ layer is deposited to create 

an insulating barrier, and the stripe window is then opened up by a 

photolithographic process. The p-side contact is normally evaporated 

without alloying in order to avoid the strain which is particularly 

deleterious to GaAs/AlGaAs laser diode life. In this structure, the 

top p-layers are relatively low doped (~5 x 10^^ cm in order to 

reduce lateral current spreading. Lateral current spreading will be 

further discussed in section 11(A). 

The second group of stripe-geometry lasers—or index-guiding lasers— 

includes buried-heterostructure (BH) [44,45], double-diffused stripe 

(DDS) [46], channeled substrate planar (CSP) [47] lasers, etc. These 

structures contain inbuilt refractive index steps which provide waveguiding 
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Fig. Ir5. Epitaxial layer structure of a shallow proton-bombarded stripe 

laser 
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Fig. 1.6. Layer structure of a contact-stripe laser 
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in the lateral direction. These index-guiding lasers generally offer 

superior linearity in light output vs. current characteristics over 

conventional gain-guiding lasers [48]. 

Waveguiding in the dielectric slab-waveguide structure is exten

sively studied by Marcuse [49]. Guiding in a perpendicular direction 

to the junction planes is dictated by the refractive index steps of 

the heterostructure. In gain-guiding lasers, optical confinement in 

the lateral direction is primarily the result of dielectric constant 

variation caused by gain distribution in the active region. Dyment 

[43] and Yonezu et al. [50] observed that the radiation patterns of 

such lasers can be described by Hennite-Gaussian functions. The field 

intensity patterns will be further discussed in section 11(C). 

3. Previous work on thermal property of the device 

As mentioned earlier, two different aspects of the laser thermal 

property have been investigated by various research groups. The first 

is the sensitivity of laser characteristics at different heat sink 

temperatures. Goodwin et al. [3], Hwang et al. [4], Hayakawa et al. 

[6], Yonezu et al. [20], experimentally observed the increase of the 

threshold current and decrease of the differential quantum efficiency 

with increasing heat sink temperature for GaAs/ÂlGaAs DH lasers. Asada 

et al. [5] and Yano et al. [22] also reported even more severe depen

dence of the laser parameters on ambient temperature for InGaAsP/InP 

lasers. 

The pulsed threshold current for a well-confined DH laser at the 

heat sink temperature is empirically expressed as 
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4 (V = 4 eq, 

- 300®K 
(1.1) 

T 
o 

where 

p 
is the threshold current for pulsed operation, 

is the characteristic temperature of the laser diode. 

The characteristic temperature depends strongly on the active and 

inactive layer materials. Goodwin et al. [3] suggested that electron 

leakage current at the heteroboundary was mostly responsible for the 

DH lasers with substantial heterojunction step heights, Ax = y - x, 

the characteristic temperature lies in the range of 120-165®K. For 

weakly confined lasers, however, the threshold current was found to 

increase at a faster than exponential rate, with a tendency for runaway 

increase with temperature. For typical InGaAsP/InP DH lasers, the 

characteristic temperature fell between 40-80®K, which is much lower 

than that for GaAs/AlGaAs systems. Therefore, the device sensitivity 

to ambient temperature is far more serious in these lasers [22]. 

A second aspect of concern is the effect of internal heating. 

For a well-fabricated GaAs/AlGaAs DH laser, a forward voltage of 1.6 V 

and a driving current in the range of ~100 mA are necessary to achieve 

the threshold condition. This means that ~160 mV? of power flows into 

the device to produce less than a few mW of optical energy. For Cw 

operation, therefore, a large portion of input energy is unavoidably 

converted into internal heating which effectively increases the device's 

operating temperature. 

threshold current increase. For strongly confined A1 Ga__ As/Al Ga__ As 
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According to Pankove [51], the power dissipated internally consists 

of: 

(i) the fraction of the power supplied to the p-n junction 

which is not converted into radiation, i.e., nonradiative 

recombination, 

2 
(ii) joule losses of I r for each layer, 

(iii) the fraction of the radiation which does not leave the 

laser. A fraction of the spontaneous emission is absorbed 

as heat at the substrate and capping layers. 

The power dissipation by (i) and (iii) is accounted for by the differen-

tiol quantum efficiency r|^. Hence, the total power dissipated in the 

device P, is 
a 

Ph = (1 .2)  
(I V. + l\)x for I < 

» CI - I,̂ )» - na)Vj + Î r̂ ix 

for I > 

nere 

Vj is the junction voltage, 

I is the diode current, 

is the threshold current, 

r^ is the series resistance of the diode, 

X is the duty cycle. 

2 
The joule loss term, I r^, is usually very small when compared to other 

heat sources because modern laser diodes have extremely thin layer 

structures. The series resistance r^ is commonly lower than 2 ohms, 

and sometimes as low as 0.05 ohms. 
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The temperature rise in the device can be expressed as 

AT(x,y,z) = R^(x,y,2) (1.3) 

where 

AT(x,y,z) is the local tençerature rise from the heat sink 

temperature, 

R^(x>y>2) is the thermal resistance at the location. 

The thermal resistance is defined as that quantity which, when 

multiplied by the dissipated power P^, yields the temperature at the 

point indicated in (1.3). 

The thermal resistance of lasers has been considered theoretically 

by Garel-Jones and Dyment [21] who used a one-dimensional model for 

heat flow applicable to oxide stripe-geometries and etched mesa struc

tures. Joyce and Dixon [9] developed a Fourier-series model applicable 

to proton-bombarded lasers, mainly taking into account heat generated 

within the active region. Kobayashi and Furukawa [10], and more recently 

Newman et al. [12] and Duda et al. [13], considered other heat sources 

at various locations including the joule losses at each layer and heat 

absorbed from spontaneous emission. 

Paoli [15] developed a technique for thermal resistance measurement 

using a null measurement of the exact wavelength of a single Fabry-Perot 

mode. With this method, average temperature rise in the active region 

by the CW driving current was accurately measured (~ <0.2°C resolution). 

Ito and Kimura [52] used this technique to study the transient thermal 

properties of laser diodes. 
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The work of Kobayashi and Iwane [11] represents the only experi

mental report on lateral distribution of junction temperature. They 

used a thermal plotter to directly measure temperature at the facet 

surface. Because of the thermal plotter's poor resolution, the data 

is not as reliable as it should be. 

B. Statement of the Problem 

The performance of a semiconductor laser can be characterized in 

terms of the emission wavelength, threshold current density, quantum 

efficiencies, radiation pattern, device lifetime, and the linearity of 

the current-light output characteristics. These parameters strongly 

depend on the material, structure, and the fabrication process used 

for the laser. 

As discussed earlier, the thermal property of the laser also affects 

these important physical quantities significantly. In many applications, 

the fluctuation of the emission characteristics and the increase in 

threshold current make the laser very difficult to use, if not impossible. 

A natural question arises about whether the thermal effect may be 

substantially reduced by proper designing of the laser structure. The 

answer is not readily available because previous work on laser thermal 

properties has generally been qualitative in nature and also because 

thermal resistance was considered only as a problem isolated from other 

laser characteristics. 

This thesis has two aims. One is to develop a quantitative laser 

model for studying the internal heating effects on the mode character

istics, threshold current, and emission spectrum in a conventional 
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gain-guiding stripe-geometry DH laser; the other is using this model 

to establish a design principle of the laser structure in order to 

minimize such undesirable effects. 

The basic problem involves several subproblems, as shown in Figure 

1.7. First, the electron concentration in the active layer is deter

mined by solving the continuity equation. If appropriate, lateral 

current spreading should be taken into account in the continuity equa

tion. 

For CW operation, the static thermal distribution caused by the 

driving current is solved by the heat diffusion equation with properly 

assumed boundary conditions. Two things can be determined from this 

solution: the average temperature rise in the active region from the 

heat sink temperature and the lateral thermal distribution in the active 

region. 

The nonuniform dielectric constant can thus be obtained from the 

electron concentration and the temperature distribution solved for in 

these subproblems. The next step is to solve the wave equation in the 

resulting inhomogeneous slab waveguide illustrated in Figure 1.8. 

Since the exact solution is not available in this complicated structure, 

two steps of approximation are necessary to make the problem workable. 

The first step is to approximate the distributions of gain constant 

and refractive index in waveguiding layers with parabolic functions. 

Because it is difficult to match the boundary conditions at active and 

inactive layer boundaries, an effective dielectric constant is defined 

for the three layer waveguide. 
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Fig. 1.7. Schematic representation of the laser model 
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Fig. 1.8. Coordinate system for the dielectric slab waveguide 
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The guided mode patterns can be determined, then, with the aid of 

eigenfunctions of the boundary value problem under consideration. The 

results of these subproblems are compared with available experimental 

reports to ensure the accuracy of the model. 

The model is used to investigate the thermal effects on some of 

the device parameters. The effect on the modeguiding characteristics 

is discussed in terms of focusing or defocusing by the refractive index 

profile. The increase of threshold current and spectrum shift caused 

by junction heating is also discussed. 

The model is also used to establish a guideline for reducing such 

undesirable thermal effects on device characteristics. The effects of 

layer thicknesses and the dimensions of the laser are rigorously investi

gated. 
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II. THE MODEL 

In this section, the subproblems of the laser model are discussed. 

The laser structure shown in Figure 2.1 is assumed to be perfectly 

fabricated so that no local heating exists. It is also assumed that 

the laser is symmetrical to the y-axis. The coordinate system shown 

in Figure 1.8 will be used throughout this work, except in the case of 

the heat equation which requires a more conçlex system. It is further 

assumed that there is no variation of current density, electron concen

tration, temperature, and optical intensity in the z direction. 

A. Lateral Current Spreading and Electron Diffusion 

1. Lateral current spreading 

In a broad-area laser, current flow is one dimensional and current 

density in the active region is uniformly distributed. In many stripe-

geometry lasers, however, current flow is two dimensional because the 

majority carrier drift current in the p- and P-layers spreads laterally, 

as shown in Figure 2.2. In well-fabricated proton-bombarded lasers, 

current spreading is minimal because the resistivity of the bombarded 

area is very high. However, current spreading is significant in contact-

stripe [531 and conventional planar-stripe [50] lasers, thereby increas

ing their threshold current density in comparison to broad-area contact 

lasers fabricated from the same material when the strip width is reduced 

below 20 pm. Its effect becomes particularly severe for strips narrower 

than 10 pm. 
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Fig. 2.1. Complete structure of a DH laser mounted on a heat sink 
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Fig. 2.2. Schematic representation of current spreading in stripe-geometry 
lasers, (a) contact-stripe (b) proton-bombarded. The spreading 
is not significant in a well fabricated proton-bombarded DH laser 
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In the approaches taken by Yonezu et al. [50] and Tsang [53], the 

total injection current I is considered as the sum of the uniform current 

under the stripe and the spreading current flowing out to the ±x 

direction, as indicated in Figure 2.2. 

I = le + 21^ (2.1) 

The spreading current is determined by solving Equation (2-2). The 

current across the junction between x and x + dx can be expressed as 

-dix' 

-dl^ = L • Jg • [exp(pV^) - 1] dx (2.2) 

where is saturation current density, p = q/nkT, and is the junction 

voltage at x. The terms q, n, k, and T represent the electron charge, 

a constant normally equal to 2, Boltzmann's constant, and absolute 

temperature, respectively. 

Solving (2.2) yields [50], as further discussed in Appendix (A), 

= (21Ig/pRgS)l/2 (2.3) 

\ ^  S )  

where is the composite sheet resistance of the p- and P-layers in x 

direction, amd S and L are stripe width and laser cavity length, respec

tively. 

The current flowing across the junction under the stripe can be 

considered uniform. That is, 
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Jy(x) = Jg = Ig/SL for < §  (2.5) 

Outside the stripe region, however, a potential drop in x direction 

exists in the p- and P-layers because of finite sheet resistance R^. 

As a result of (2.2), the distribution of the current density flowing 

across the junction for the region is given by 

(• V I: + 
U1 - s/2 y 

^o / 
for |z] > 2 (2.6) 

where 

Ao = 21/P*s:o 

= (2/eRgJg)l/2 

(2.7a) 

(2.7b) 

The condition Jy(±^) = for (2.6) is applied to derive (2.7b) from 

(2.7a). 

Through the use of (2.1) and (2.3), the current density at the 

p-contact can be expressed as 

J = I/SL = J + (8 J./PR ls2)l/2 
e r s (2.8) 

Solving (2.8) for J gives 

J = J + 4/pR - [(J + 4/pR.s2)2 - (2.9) 

Hence, the current density arriving at the active layer can be calculated 

by (2.5), (2.6), and (2.9), with the knowledge of sheet resistance R^. 

Figure 2.3 illustrates the lateral current spreading for several R 
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Fig. 2.3. The calculated current distribution flowing into the active ^ 
region for different composite sheet resistances, (a) R = 10 Q 
(b) Rg = 500 n (c) Rg = 150 Q 



www.manaraa.com

In steac 

L: 

I 

L ^ where 1 Ni itag 

(2.5) ar ^ 

~ ~  

jZfCRzz: 

Sin 

necessar 

exponent 

Si°ce th 

" I.' 

Thus, I 

£.qu. 

I'.*:... 

«Kaaew@es@asK@ 
-_.vzS2Ua.'iĉ .:Li 
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values. For a well-fabricated, proton-bombarded laser, is extremely 

high (~10^Q), and current spreading is negligible. 

2. Electron out-diffusion in the active layer 

For uniform planar structured lasers, the current density given 

by (2.5) and (2.6) flows into the active layer. A significant amount 

of carrier diffusion occurs toward the edges of the laser cavity. 

Because the active layer is usually very thin in comparison to the 

width of the stripe, and also because of the energy barrier at the p-P 

heterojunction [30,54], it is safe to assume that the electron concen

tration is uniform in y direction. 

The active layer is typically either undoped or very lightly doped 

so that the electron and hole concentration are almost equivalent at a 

high injection level. Therefore, the nature of the carrier out-diffusion 

is ambipolar diffusion. The ambipolar diffusion constant for p ~ n is 

reduced to [55] 

: 2D (2.10) 
a p 

where is the hole diffusion constant. The derivation of (2.10) is 

summarized in Appendix (B). 

At or below threshold condition, where hole burning by stimulated 

emission is negligible, the electron concentration in the active layer 

can be found by solving the continuity equation (2.11). 

J (x) 

®a ' if "Id x" = ° (2-11) 
^ n 
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In steady-state, |^ = 0 with ̂ ^ = 0^ = 0, (2.11) reduces to 

a 

1/2 
where = (D^ X^) is the ambipolar diffusion length. Substituting 

(2.5) and (2.6) into (2.12) yields 

M i l  o i w  
dx L a ^ 

a 

^ (l 4. I*1,- ^ |s| > I (2.13b) 

Since Equation (2.13b) does not have a single solution, it is 

necessary to approximate the right hand side of the equation with an 

exponential function. Let 

(  ̂ Ixl - S/2\ ^ : J exp [-1(1x1 - §)] (2.14) 

g 
Since the total spreading current from x = ^ to x = » should be equal 

to 

roo 

L j J exp [-!( X - S/2)] dx = I (2.15) 
S/2 ® ° 

Thus, I = 1/4^. 

Equation (2.13) is approximated as, 
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d^n n _ , , , S 

dx2 L 2 
a 

xj < I (2.16a) 

Je 
exp 

Da qd 
^ lx|^- S/2^ |x| > I (2.16b) 

Solving (2.16a) with the boundary condition that the electron 

concentration is symmetrical about x = 0 gives 

/ \ J L ^ 
n(x) = 2B cosh (2.17) 

-a 94 

Also, the solution of (2.16b) with n(«>) = 0 yields 

2 , 2  

= c e=cp (- (• 
xl- S/2 . » 

(2.18) 

5 The continuity of the electron concentration and gradient at x = 

yields 

/ q \  2  1  2  J  

( 5 I ; )  ̂  =  C  ^  

and 
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Solving (2.19) and (2.20) for B and C results in 

(2.21) 

c  =  l t  1 + exp(- =— (-0 + c - £ ^ - L ̂  
o a 

t (2.22) 

where 

^ D, qd 
(2.23) 

Substituting (2.21) and (2.22) into (2.17) and (2.18), the electron 

concentration in the active layer is written as 

n(x) = ^ ^ ̂  ̂  exp^- cosh^^ + C for 0 < x < S/2 (2.24a) 

n(x) = C 
Ï (' *0 * h )  i j  

Si  ̂ - L  ̂
0 a - • ̂  

- "-a 

C exp I - ̂  ^ I for X > S/2 (2.24b) 
\ °o / 

The calculated electron concentration distribution is shown in Figure 2.4. 

Experimental values reported for diffusion length and electron relaxa

tion time are 3.0 ~ 3.6 pm and 2.8 ~ 3.3 nsec, respectively. As a 
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result, curve (b) in Figure 2.4 shows a good agreement with intensity 

profile of the spontaneous emission measured by Hakki [31]. 

1. Coordinate system and assumptions 

To solve the heat equation in a multi-layer structure as shown in 

Figure 2.1, the coordinate system illustrated in Figure 2.5 was used. 

The thermal conductivities and dimensions of interest are summarized 

in Table 2.1. 

The following assumptions were made for the heat equation: 

(i) heating is mainly the result of nonradiative recombination 

in the active layer under the stripe. Heating is uniformly 

generated in the thin box-shaped region. 

(ii) the thermal conductivities of each layer are constant in 

the layer 

(iii) heat dissipation through the back side of the substrate 

and the sides of the diode is negligible. That is, 

B. Thermal Distribution in the Laser 

at the top and sides (2.25) 

where n is the normal vector corresponding to the top and 

the sides of the laser. The heat sink is ideal such that 

the temperature is constant at the interface. Or, 

T = T, 
h 

at the heat sink (2.26) 
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Fig. 2.5. Coordinate system used for heat equation 
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Table 2.1. Typical layer structure for modern stripe geometry 
GaÂs/ÀlGaÂs DH laser 

Layer 
Number Description Composition 

T^ical 
Thickness 

(iJm) 

Thermal 
Conductivity 
(W/cm-®K) 

1 Bonding In 1 ~ 10 0.87 

2 Solder contact Au 0.1 - 10 3.18 

3 p-contact Pt 0.1 0.80 

4 p-contact Ti 0.1 0.22 

5 Capping p-GaAs 1 - 3  0.45 

6 P-inactive 0.8 - 2 0.14 

7 Active p-GaAs 0.1 - 0.3 0.45 

8 N-inactive ^•^^0.3®^0 1 ~ 3 0.14 

9 Substrate n-GaAs 100 0.45 

10 n-contact GeAu 0.4 ~ 2 1.50 
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For convenience, = 0 will be used to solve the heat 

equation. 

2. Solution of the heat equation 

In this section, the heat equation (2.27) is solved with the 

standard separation of variables technique. For steady-state con

dition, with the assumptions listed above, the heat equation becomes 

oV^ T = -Q^ (2.27) 

where a, T and represent thermal conductivity, temperature, and the 

heat generated at the location. To solve (2.27), it is necessary to 

consider the homogeneous equation 

Oi Ti = 0 (2.28) 

i = 1, 2,...10 

where a,, and correspond to the thermal conductivity and temperature 

distribution at the ith layer. Given the assunçtion that = 0, 

the variables can be separated such that 

T.(x,y) = X.(x) Y.(y) (2.29) 

Substituting (2.29) into (2.28) yields 

Xi" Y^" = 0 (2.30) 

or 
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V I  I t  

X. Y. 
^ = - = -k (2.31) 
i i 

Because of the symmetry, and also because of the boundary condition 

that 8T^/3x = 0 at x = ±B/2, the functions of X^(x) and Y^(y) can 

be given as 

X^(x) = cos(k^x) (2.32) 

and 

Y^(y) = cosh[k^(y - y-.j)! or sinh[k^(y - y^.j)] (2.33) 

respectively. Here k^ = 2nn/B where n is an integer n = 1, 2, 3 

Thus, the complete solution for (2.28) yields 

T.(x,y) = - yi.p 

+ X a cosh[k^(y - y^)] + sinh[k^(y - y^)]} cos(k^x) 

(2.34) 

3. Determination of the Fourier coefficients 

The coefficient a's and p's in (2.34) should be determined with 

assumed boundary conditions and the condition for the continuity of 

temperature and heat flow at each layer boundary. These are 

T(x, y = y^) = 0 (2.35) 

P (x, y = Yjq) = 0 (2.36) 
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T^Cyi) = T.+iCy^) (2.37) 

31 (y ) BT (y ) 
<Ji for i ^ j (2.38) 

3T (y ) 8T 
-V = Vl "3^ (?i) +Q for i = j (2.39) 

For the GaAs/AlGaAs laser model, j = 7 and N = 10. In Equation (2.39) 

2 
Q is the intensity of the heat source in W/cm . For convenience, it is 

assumed that diode input power is in the unit of W, i.e., Q = P^/SL 

for |x| < S/2 and Q = 0 elsewhere. 

With Equations (2.35)-(2.39), the coefficients can be calcu

lated. First consider 

T.Cx.yp = o. „ + p. Jy. - y,.p 

00 

+ E cosh[k^(y. - y^.^)] + Pi* sinh[k^(y^ - y^,})]} cos(k^x) 

(2.40) 

and 

00 

Vi(x,yi) = Vl,n ̂os(k^x) (2.41) 

Equating (2.40) and (2.41) according to (2.37) results in 

°i,0 * Pi,0 '^i ~ °1+1,0 (2.42) 

*i,n cosh(k^d.) + Pi a sinh(k^ d.) = forn > 1 (2.43) 
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where dL = - y^ ^ is the thickness of the ith layer. 

Next, consider the continuity of heat flow for the case of i ^ j. 

31. 

^i 3y" 
y=yi 

("î i.O + ̂  tVi.n̂ n î̂  

+ *iPi,a K coshCk^ dp] cos(k^x) (2.44) 

a. 
ati+i 

i+l 3y 
y=yi 

^i+l^i+1,0 *^i+l^i+l,n \ cos(k^x) (2.45) 

Equating (2.44) and (2.45) yields, for i ^ j, 

^i h,o = Vi Pi+1,0 (2.46) 

ai[c(i^n "^i^ + ^i.n Pi+i,n ^ ̂  % 

(2.47) 

For i = 7, the heat source intensity is represented as a Fourier 

series such that 

[Pd/SL 
Q = 

hi ' l  4  
(2.48) 

becomes 

" - s B sS 2. 
n=l 

cos (k^x) for 0 < |x| < j (2.49) 

Using (2.39) and (2.49), for i = j 



www.manaraa.com

42 

P. 

°ïPi,0 " ̂i+l^i+1,0 a (2.50) 

+ h,n \ 

4P, sinCk S/2) 

~ ̂ i+1 Pi+l,n ^n SLB k for n > 1 (2.51) 

Also, from the boundary conditions (2.35) 

a = 0 for n > 0 (2.52) 
lyU 

The boundary condition (2.36) 

8T » 

W V = ^,0 * E •%) 

* n ^°^^(\ d^)] cos(k^x) = 0 for all x 

(2.53) 

reduces to 

&.0 = « (2.54) 

Qjj ^ sinh(k^ djj) + ^ cosh(k^ d^) = 0 for n > 1 (2.55) 

Using the Equations (2.42), (2.43), (2.46), (2.47), (2.50), (2.51), (2.52), 

and (2.55), it is possible to determine the Fourier coefficients. 

First, (2.46), (2.50), and (2.54) yield 

%,0 = " «.54) 
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P. 
5^ for 1 < i < j (2.56a) 

0 for j < i < N (2.56b) 

From (2.42), (2.52), and (2.56), 

Define Y« _ using (2.55), where V- h R /a 
Xyli lyUlyU 

^ V (2.58) 

Substituting i = 1 into (2.47) gives 

P2,n ^2 = ̂ lf°'l,n ^1^ + h,n c°sh(kt d^] (2.59) 

Also, from (2.43), 

*2,n = *l,n ^1^ + Pl,n 60) 

where = 0 in (2.59) and (2.60) because of (2.52). Dividing (2.59) 1 ,n 

by (2.60) yields 

l2,n " 5̂  ''l> (2.6!) 

Similarly, dividing (2.47) by (2.43) results in 

^ "jttanhCk^ d.) + 

i+l,n OTi+iH + Yi n tanh(k^ d^)] 
(2.62) 
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Using (2.61) and (2.62), it is possible to determine from y, up to 
z,n 

In the same way, Vjj n n found. 

To find the coefficients a. , first rewrite Equation (2.51). 
i,n 

^i *j,ntsioh(ka cosh(k^ d^)] 

4P, sin(k S/2) 

~ ̂ j+1 9y+l,n SIB Tl (2.63) 

n 

Subtracting x (2.43) from (2.63) yields 

4P, sin(k S/2) 

^ Gj+l,n(°j+lPj+l,n " * SLB 72 

n 

Now, substitute a. ̂  in (2.64) by (2.43) and solve for a. . 
j,n 

4P^ sin(k^S/2)/SLB k^^ 

(2.65) 

The remaining a. are determined from (2.43) and (2.65). 
1 ,n 

4. Thermal resistance and temperature distribution 

Because the heat equation (2.27) is a linear differential equation, 

it need not be solved for each driving current level. Therefore, it 

is convenient to define the thermal resistance of the laser as men

tioned in Equation (1.3). The thermal resistance can be determined by 
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simply substituting = 1 into the equations for Fourier coefficients. 

A typical solution is shown in Figures 2.6-2.8. 

Two physical quantities are of interest here. One is the lateral 

temperature distribution in the active layer, and the other is average 

temperature rise in the active region. Therefore, define 

RjCx, y=yj) = Tj(x, y=yj)/Pj (2.66) 

and 

1 rs/2 
R? = 0 J T,(x, y=y^)dx (2.67) 
^ ^ -S/2 

For purposes of simplicity, was used as (2.67), to study the junction 

heating effects instead of a volume averaged temperature. is used 

to investigate the lateral thermal guiding effects. As discussed in 

Equation (1.2), is considered substantial only for CW operation 

(X = 1) or heavy duty cycle pulsed operation. If the duty cycle x is 

-2 
lower than 10 , the heat generated by the driving current is negligible. 

The average junction temperature rise for CW operation ATj accord

ing to (1.2), (1.3), and (2.67) is defined as 

ATj = Rg P^ (2.68) 

For the special case of threshold input it is 

iîf = % Pa " = 

= "2 Ith \ \ Itb «.69) 
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Fig. 2.6. Lateral thermal distribution for different stripe widths, 
(a), S = 6 ym (b) S = 12 ym (c) S = 18 ym 
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Fig. 2.8. Thermal resistance Rj-(x=0) in the transverse direction 
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where the joule loss term is usually very small in comparison to the 

first term in (2.69). Since the threshold current and thermal 

resistance Rg are strongly dependent on the structure, ATj^ must be 

determined by the laser waveguide model along with the thermal distri

bution model. The results of calculated will be further discussed 

in section III. 

C. Wave Equation in the Laser Cavity 

This section investigates the solution of wave equation in the 

laser cavity. Optical field distribution in the dielectric slab wave

guide is determined by Maxwell's equations [56,57]: 

V X E = - || (2.70) 

and 

V X H  =  ̂  ( 2 . 7 1 )  

Combining Equations (2.70) and (2.71) gives the wave equation 

= 1J£ ^ (2.72) 
at'' 

or 

= 0 (2.73) 

= u)^|j£ (2.74) 
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for the time-harmonic case. Here, p, e, and k are magnetic permeability, 

dielectric permittivity, and wave number, respectively. 

The dielectric constant in the slab waveguide can be described as 

e-(x) y in active layer 
(2.75) 

SgCx) y in cladding layers 

The variation of dielectric constant in y direction is dictated by 

the refractive index difference between GaÂs and AlGaAs. On the 

other hand, the dependence of in x direction is believed to stem 

from the gain and temperature distribution in the x direction. 

Many different modes may propagate in such a three-layer dielectric 

slab waveguide. According to Ikegami [58], transverse electric modes 

usually dominate since these modes have a larger reflectivity at the 

cavity mirrors. Also, in a modern DH laser the active region is usually 

very thin so that the fundamental mode can only exist in the vertical 

direction. Therefore, only TE fundamental mode in the y direction is 

considered here. 

1. Dielectric constant variation in the lateral direction 

The complex index of refraction n^ of dielectric material is 

defined as [51] 

n^ = n - jk (2.76) 

where n and k are the real refractive index and the extinction coeffi

cient, respectively. Consequently, the dielectric constants in each 

layer can be written as 
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£^(x) = (n_(x) - jL(x))^ 

~ n^^(x) - 2jn^(x)L(x) (2.77) 

where i = 1 or 2. Also, the extinction coefficient is related to 

the absorption coefficient of^ of the medium as 

\ a.(x) 
ki(x) = (2.78) 

or 

(2 79) 

Here the gain coefficient g^(x) = -a^(x). Using the relation 

k = r (2.80) 

yields 

-8i(x) 
ki(x) = (2.81) 

and 

e^(x) = n^^(x) + jn^(x)g^(x)/kg (2.82) 

The gain distribution in the active layer is proportional to the 

electron distribution [59,60] described earlier. That is, 
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glCx) = % n(x) - for n > 1.28 X cm'^ 

1ft -9 
for n < 1.28 X lOT* cm 

(2.83) 

where a and b are empirically known as 

-16 2 
a = 2.54 X 10 cm 

0 

b = 424.0 cm ^ 
0 

— 1 
c = -100.0 cm 

(2.84) 

o 

Also in Equation (2.82), ggXx) represents the absorption in inactive 

layers. 

The refractive index n^(x) is affected by both the electron distri

bution and the temperature gradient [40]. Injected electrons lower 

the refractive index of the active layer by two separate interactions. 

The first is the free-carrier-plasma interaction, which can be precisely 

calculated [51]. The second is a result of the gain process itself. 

Gain or loss processes with a pronounced spectral variation make a 

contribution to the refractive index of the material according to the 

Kramers-Kronig relations. 

Paoli [61] and Buus [62] calculated the free-carrier contribution 

as 

82(x) = -"2 (2.85) 

(2.86) 

or 
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= -1.26 X io"21 (cm"^) • ôn for = 0.9 [m (2.87) 

Here is the effective mass of the electron. The experimental values 

for dn/dn are in the same order of magnitude [63,64]. 

The temperature effect on the refractive index is experimentally 

known as [17,65,66] 

Il S 4.9 X 10"V®K (2.88) 

From (2.87) and (2.88) the following is derived: 

nj(x) = nj(0) + g {n(0) - n(x)} + ̂  {T(0) - T(x)} (2.89) 

where n^(0) represents the refractive index in the active layer at the 

center of the strip (x = 0). With (2.89), the refractive index variation 

in the lateral direction may be calculated. 

In the inactive layer, there is no electron concentration affecting 

the refractive index. Therefore, in these layers 

n^ix) = 5^(0) + 0 (T(0) - T(x)} (2.90) 

2. Parabolic approximation 

The wave equation for a slab waveguide such as the one described 

in the last section is extremely difficult to solve. Frequently the 

gain and refractive index distribution are approximated with parabolic 

functions [67]. It should be pointed out, however, that this approxi

mation method is only valid for the case where the optical intensity 

is well confined inside the stripe region. This is true for lasers 
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with a strip width greater than 6 |jm. With this in mind, the parabolic 

approximation will be used in this work. Later, the solution of the 

wave equation with the approximation will be shown to be Hermite-Gaussian 

modes which have been experimentally observed [43,50]. 

It is assumed that the gain and refractive index in each layer 

can be written as 

gj(x) = gj(0) - b^x^ (2.91) 

ggCx) = -«2 (2.92) 

n^(x) = n^(0) - c^x^ (2.93) 

n2(x) = n2(0) - d^x^ (2.94) 

where g^, g^, n^, n^ represent the gain distribution in active and 

inactive layers, and the refractive index distribution in active and 

inactive layers, respectively. Figure 2.9 illustrates the assumed 

distributions. 

3. Effective index approximation 

As previously discussed, a common description of the lateral modes 

of a stripe-geometry laser uses the Hermite-Gaussian functions, while 

the transverse field dependence is dominated by the large steps of the 

heterojunctions. Only two methods have been proposed so far to tie 

together the lateral and transverse field dependencies under the stripe 

[68]. The first is the effective index method [61,62]; the second is 

the exact method [69]. 
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g(x) 

S/2 -S/2 

n(x) 

/1\ 

An. 

S/2 -S/2 

Fig. 2.9. Parabolic approximation of the gain and index variation in the 
lateral direction 
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The exact description of the lateral mode takes into account the 

vertical geometry by matching the field quantities at the hetero-

boundaries. The result is a lateral mode description by a linear 

coefficients. 

On the other hand, the effective index method results in a single 

term lateral field description with appropriate "effective" parameters 

derived to account for the influence of the cladding layers on the 

lateral mode shape. 

The effective index method is used in this model for two reasons. 

First, the model has already employed other approximations including 

the parabolic gain and refractive index distribution so that the fine 

accuracy of the solution is not critical to the waveguide solution. 

Second, the exact solution is almost identical with the effective 

solution in thermal guiding situations. 

We start with the wave equation (2.73) and the dielectric constant 

(2.75). That is, for TE modes, 

combination of Hermite-Gaussian functions with appropriate weighting 

V^t^(x,y,z) + k^(x,y) f^(x,y,2) = 0 (2.73) 

(2.74) 

where, again. 

£j.(x,y) = 
G^(x) y in active layer 

C2M y in inactive layer 
(2.75) 
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Since a rigorous solution to the wave equation (2.73) is not 

available, the following approximation is necessary. 

Assume that the solution takes the form 

î^(x,y,z) = ilJ(x)<t)(y) expC-jP^z) (2.95) 

Also, the dielectric constant varies much more slowly in the x direction 

compared to the heterojunction steps in the y direction. Therefore, 

it is assumed that the modal distribution (j»(y) is not appreciably 

affected by the confinement along x In this case, (t)(y) satisfies 

+ P/ <t>(y) = 0 (2.96) 
dy ^ 

Substituting (2.95) into (2.73), gives 

,2. 
^ ^2*^ <t>(y) + ^ #(x) + s„(x,y) k 2#(x)4(y) - p 2*(x)*(y) = 0 
dx^ dy'^ r o z 

(2.97) 

Again, substituting (2.96) into (2.97) yields 

2 
4(y) ^ ^2*^ + {s_(x,y)k ^ - p/ - 4i(x)4i(y) = o (2.98) 

dx r o 2 y 

To accommodate the variation in y, multiply ^Xy) to equation (2.98) 

and integrate over y, using Equation (2.75): 
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/ $ dy + 1 [Gi(z)kJ% - p/ - p/] 4» 4* dy *(X) 
-OS dx active 

layer 

+ / [(^(x) (ji 4)* dy *(x) = 0 (2.99) 
outside 
active 
layer 

1.98) by / Dividing both sides of the Equation (2.98) by J ^ dy, gives 
-00 

2 
+ [rsi(x)kjz + (1 - DSgCzik,: - py^ - p/] *(x) = 0 

(2.100) 

where the confinement factor f is defined as 

J (|)(y)#(y)dy 

r = ^ (2.101) 
$(y)**(y)dy 

-CD 

The values of F for transverse fundamental modes are shown in Figure 

2.10 for GaAs/Al Ga, As DH lasers [70]. 
X 1-x 

The "Effective dielectric constant" G^^^Cx) is defined as 

SeffCx) = rs^(x) + (1 - F)E2(X) (2.102) 

Then, Equation (2.100) is equivalent to 
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1.0 

X = 0.3 0 .2  

0.1 

.5 

0 0.2 0.4 0.6 0.8 1.0 1.2 
Active region thickness d (Um) 

Fig. 2.10. r against d for the fundamental mode in the GaAs/Al^Ga^-xAs 
symmetrical DH laser for several values of x [70] 
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2 
^^2^ + - P/ - P/] *(x) = 0 (2.103) 

The effective dielectric constant can be determined by substituting 

(2.82) and (2.91)-(2.94) into (2.102). 

= rej(x) + (1 - r)s2(x) 

= r[n^(0) - cV]^ + ̂  r[nj(0) - cV] [g^(0) - bV] 
o 

+ (1 - r)[n2(0) - dV]̂  + i- (1 - r) [RgCo) - dV] ĝ  
O 

^ rnj^(O) + (1 - Dng^OD) - x^[2rn^(0)c^ + 2(1 - r)n2(0)d^] 

+ x^[rc^ + (1 - r)d^] 

+ ̂  [r£^(0)g^(0) + (1 - r)n2(0)g2(0)] 
o 

- ̂  x^ {r[c^gj(0) + b^nj(O)] + (1 - Dg^d^i 
o 

+ ̂  x^ r b^ c^ (2.104) 
o 

Equation (2.104) can be simplified as 

Seff(=) = Seff(O) - *eff ^2.105) 

where a^^^ = + i is a complex parameter determined from (2.104). 

The terms O(x^) are discarded because they are negligible when con^ared 

2 
to the 0(x ) terms. 
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For instance, compare the terms in the real part of (2.104): 

r c^ (2.106) 
2rnj(0) c^ x^ 2ij(0) 

From the parabolic approximation, c^ = 4An^/S^ or 

, 4[n,(0) - n.(S/2)] 
c = i (2.107) 

(2.106) becomes, 

2 2 4[n (0) - n (S/2)]x^ 
4-^ = ^ S (2.108) 
2n (0) 2n (0) 

Here, n^(0) ~ 3.6, 

Sj(0) - 5^(8/2) Z lO'S, 

and yield 

r c^ x"^ 
« 1 (2.109) 

2rn^(0) c^ x^ 

In the same way, it can be shown that 

(1 - r) d X « 1 (2.110) 

2(1 - 0^2(0) d^ x^ 

Also, for the imaginary part of (2.104) 
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= (2.111) 
r b n^CO) X n^(0) 

We now find the parameters a^ and a^ from (2.104) and (2.105). 

=eff = (*r + j *i)^ 

= 2[rnj(0)c^ + (1 - r)n2(0)d^] 

+ {r(c^8j(0) + b^nj(O)] + (1 - Dg^d^ï (2.112) 
o 

Equating the real and imaginary parts of the left and right hand sides 

in (2.112) results in 

a/ - a.^ = 2[r nj(0)c^ + (1 - O n2(0)d^] (2.113) 

2a^ai = ̂  {r[c^g^(0) + n^(0)b^] + (1 - F^g^dZ} (2.114) 
o 

Solving (2.113) and (2.114) for a^ gives 

= r nj(0)c^ + (1 - r) n2(0)d^ 

+ ur nj(0)c^ + (1 - n 

+ ̂  [r c^gj(O) + r n^(0)b^ + (1 - r)g2d2]2}l/2 

^O 

(2.115) 

a 

For CW operation, 
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= 4A2 (2.116) 
S"^ 

_ 4(An + An ) 
: ~ ^ — (2.117) 

and 

2 (2.118) 
S"^ 

For low duty cycle (% ~ 0) pulsed operation, 

An^. = 0 (2.119) 

For (2.116)-(2.119), 

Ag = g^(0) - gj(S/2) (2.120) 

Ane = ̂  [n(0) - n(S/2)] (2.121) 

A^t = ^ [Tj(0) - Tj(S/2)] (2.122) 

are defined. 

The effective dielectric constant can also be represented as 

t "eff(%) keff(=) (2.123) 

where 
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4Aû -

- -TT- == (2.124) 

Equating (2.104) and (2.124) with (2.117) and (2.118), 

*,(0) 
= r(Ang + M^) + (1 - F) _ An^ 

nj(0) 

= An^. 
%(0) 

n^(0) 
+ r 1 -

^^(0) 

n^(0)j 
+ r An (2.125) 

It is interesting to note that 

An Z An. + T An 
eff t e (2.126) 

for the case of n^(0) ~ n2(0), 

4. Solution of the wave equation 

The wave equation (2.103) with (2.105) reduces to 

^ - Py^ - *(X) = 0 

(2.127) 

The solution of (2.127) with the parabolic dielectric constant are known 

as Hermite-Gaussian functions [61,67]. The Hermite-Gaussiaa functions 

are well-known as the eigenfunctions of the time-independent Schrodinger 

equation for a harmonic oscillator [71,72]. That is, 

%) exp(- i x^) (2.128) 
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where C is the normalization constant to be determined yet, and the 
n ' 

Hermite polynomial is written as 

H„(4) • & [•''-'-"1-

(2.129) 

Applying (2.129) to generate, as an example, the first three s gives: 

Hod) = 1, (2.130) 

Hjd) = 24, (2.131) 

and 

EgCg) = 4r - 2. (2.132) 

The derivation of the solution (2.128) is further discussed in Appendix 

(C). 

The wave equation in the y direction is solved from (2.96). The 

fundamental mode solution takes the form 

4.(y) = 

cos[p(y - g)] 

cos(p |) exp(-qlyl) 

cos(p g) exp[-q(y - d)] 

for 0 < y < d 

f o r  y  <  G  

for y > d 

(2.133) 

The quantities p and q are the eigenvalues of the slab waveguide boundary 

value problem. 
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The mode intensities which are proportional to | are illustrated 

in Figure 2.11. 

5. Mode gain, near- and far-field pattern 

Since the fundamental mode in both a lateral and transverse direction 

is of primary interest, the mode gain of such a mode must first be 

found. Here G is defined as the mode gain of mth transverse and nth fttn 

lateral mode. 

/ f g(x,y) |E P dx dy 

Goo = :: ,00 C2.134) 

r ; 
—QO —QO 

or 

/ SjU) 

r k.wi °oo = r (1 - r)«2 C2.135) 
dx 

The threshold condition is that the mode gain matches the optical 

loss in the cavity [73]. That is, 

^oo - E i (2.136) 

where R is the mode reflectivity at the facet. 

2 
Now the lateral mode gain G^ is also defined as 
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0=0.12 MICRONS 
5=12 MICRONS 

(a) 

(b) 

0.00 0.25 0.50 0.75 1.00 1.25 

Position X in the lateral direction (ym) (x lO) 

. 2.11. First three lateral mode intensity profiles obtained from 
Hermite-Gaussian eigenfunctions. (a) zeroth-order 
(b) first-order (c) second-order 
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/ 8iW <ix 
6" = =2 
n rOO 

I I 4% 

(2.137) 

For the fundameatal lateral mode, 

/ g^Cx) [4*o(x)|^ àx 

f |4o(x)|^ dx 

G^ = — 
O fOD 

-05 

(2.138) 

where the normalized eigenfunction is 

(2.139) 

Substituting (2.139) into (2.138), and using (2.91) and (2.116) for 

gqCx), 

<-L  00 

gl(0) - ̂ =2 X-

= 8̂ (0) - -|̂  

S ko^r 

Similarly, 

k a^ 9 
exp(-k^a^ X ) dx 

k al/2 a 3/2 

= I.,*;!  ̂ Î I'. Sff 

(2.140) 

(2.141) 

G| = 8̂ (0) - ̂  

^ ^o *r 

(2.142) 
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The threshold condition (2.136) can also be expressed, using 

(2.135) for nth lateral mode, as 

r < - CI - r)., = i to i (2.143) 

or 

G^= [(1 - Doi^ + ^ i]/r (2.144) 

Consequently, the lowest driving current which injects enough electrons 

to meet the condition (2.144) is the threshold current of the device. 

Next, consider the radiation patterns. The lateral optical distri

bution in the laser A(x) for the fundamental mode is 

A(x) = |4^(x)|^ 

= A^ exp(- I x^) exp(- | x^) 

AQ exp(-k^ x^) (2.145) 

The near-field half-power full-width, is defined as the full width 

of half power points of the intensity, i.e.. 

A(| WJ = I Â  (2.146) 

For the Gaussian mode. 

exp -ko a 
1 
2 (2.147) 
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or 

• > = '  m" (2.148) 

2 . 
Also, can be defined as the width of 1/e intensity points, or 

exp = exp (-2) (2.149) 

or 

W = 2 
e 

/ 2 \l/2 
(2.150) 

In the case of the Gaussian mode, 

W = 1.7 W, 
e h (2.151) 

The far-field intensity pattern B(6) can easily be determined by 

the relation 

B(0) = f(8) / ^^(x) exp(-ik^x sin0)dx (2.152) 

where f(0) Z cosB is the Huygen's obliquity factor [70], and 0 is the 

angle between the z-axis and the observation direction in the junction 

plane. For small 0, f(0) ~ 1 is valid. Therefore, for small angle 0, 

B(0) : 
/ 

->00 

00 / Ic 3 
° ̂ exp(-Y sin0)dx 
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2a 

effl 
exp 

sin^e 
o 

" 4f). 

(2.153) 

The full angle at half power, 6j^, is derived from (2.153), 

exp 
k sin 
o \) 2a 

'eff 

1 
2 

(2.154) 

or 

(2.155) 

The results of near- and far-field patterns will be further discussed 

in the following section. 
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III. RESULTS AND DISCUSSION 

The model discussed in the previous sections was used to investigate 

nonuniform temperature effects on the performance of the laser. On 

the basis of the model, a computer program was developed using the 

WATFIV language. The input data of the program include the dimen

sions of the laser cavity, stripe width, thickness and thermal conduc

tivity of each layer, and the input driving current. As summarized in 

Figure 1.7, the output of the model includes the thermal distribution 

in the laser and the waveguiding parameters. 

In this section, some of the results are presented along with the 

previously reported experimental data. 

A. Junction Temperature Effects 
on the Performance of the Laser 

1. Effect on waveguiding 

The near-field intensity distribution of a guided mode is deter

mined by the parameter a^ as derived in Equation (2.145). Because the 

parameter a^ depends on the gain and refractive index distribution, 

and also on the active region temperature distribution, the near-field 

intensity differs between CW and pulsed operation. Figure 3.1 illus

trates the typical near-field patterns of the lateral fundamental mode 

at different operating conditions. 

Figure 3.1 indicates the index focusing of the lateral modes which 

results from the thermal gradient in the lateral direction for CW opera

tion. This was experimentally observed by Paoli [61]. Figure 3.1 

also shows an index defocusing of the modes for pulsed operation in 
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0=0.12 MICRONS 
5=12 MICRONS 

0.00 0.25 0.50 0.75 L.OO 1.25 

Position X in the lateral direction (lim) (x 10) 

. 3.1. Fundamental mode intensity profiles for different operating 
conditions, (a) CW operation (b) gain-guiding only 
(c) low duty cycle pulsed operation 
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Table 3.1. Parameters used in the model 

0.9 kim 

10^ Q 

3.4 pm 

tn 2.8 ns 

dn/dT 4.9 X 10 * °K 

dn/dn -1.26 X io"21 cm"3 

II 20.0 cm~^ 

R 0.3 

V. 
J 

1.6 V 
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Table 3.2. Default values for laser dimensions. Unless otherwise 
specified, the following are used for calculation 

Layer thickness d^ 10.0 
(in pm) 

d^ 0 . 1  

dg 0.1 

d^ 0.1 

d^ 2 .0  

d^ 1 .0  

dy = d 0.12 

dg 2.0 

dg 100.0 

dio 0.2 

Dimension S 12.0 
(in |Jm) 

L 380.0 

B 300.0 
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comparison to the purely gain-guiding case. This is caused by the dip 

in the refractive index profile which results from the electron concen

tration distribution. The pulsed-operation index defocusing was 

originally observed by Cook and Nash [67]. 

Figure 3.2 shows the effect of the index focusing and defocusing 

on the near-field half-power full-width, W^, of the fundamental 

mode. In calculating Figure 3.2, the hole burning effect was not 

taken into account. The above threshold property will be further 

discussed later in this section. According to the calculation, for 

CW operation is about 2 pm smaller than for pulsed operation. This 

indicates that the radiation pattern can change significantly depending 

on the operational condition. 

In order to investigate the significance of index-guiding in a 

gain-guiding laser, the guiding parameter is defined as 

\ ».l)  

where An^^f and Ag are defined by (2.125) and (2.120), respectively. 

When the gain at the center of the stripe region is higher than it is 

at the edge region, or Ag > 0, a positive represents the refractive 

index focusing of the guided modes. A negative R^ indicates the refrac

tive index anti-guiding which widens the modal shape, as illustrated 

in Figure 3.1. 

As derived in the previous section, for the lateral fundamental 

mode is expressed as 
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150 200 

Injection current I (œA) 

Fig. 3.2. Calculated near-field mode width W^. (a) CW operation 
(b) gain-guiding only (c) pulsed operation. Circles 
represent CW experimental data from [61] 
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-.-W' 
(2.148) 

The parameter a^ in Equation (2.115) can easily be reduced, using 

(2.116)-(2.118) and (2.125), to 

2 4n^(0)Ag 
®r = 3 

An 
eff 
Ag 

1/2 
(3.2) 

or 

{'.-h'-m 1/2 I (3.3) 

For the pure gain-guiding situation, or = 0, 

2 4rn^(0)Ag 

0 

(3.4) 

Therefore, the ratio of the half-power width for CW or pulsed opera

tion to that of the pure gain guiding condition is 

* 0) 
\(Kg = 0) 

r/k 1/4 

\ + [R/ + (r/k,)2]i/2| (3.5) 

Figure 3.3 shows the guiding parameters of CW operation for 

different laser dimensions. For pulsed operation at threshold, is 

found to be -1.57 x lO -2.88 x lo ^ and -3.77 x 10 ^ when the active 

layer thickness d is 0.12, 0.2 and 0.3 pm, respectively. As indicated 

in (3.1), index-guiding becomes significant as R^ becomes larger. 
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12 18 

Stripe width S (ym) 

Fig. 3.3. Waveguiding parameter Rg as a parameter of the stripe width S. 
(a) d *= 0.12 ym (b) d = 0.2 ym (c) d = 0.3 ym 
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According to Figure 3.3, the index-guiding is relatively inqportant in 

a narrow-stripe laser or a thick-active-layer laser. 

The temperature difference between the center and edge region of 

the stripe is found to be almost the same at threshold for different 

stripe widths as long as the active layer thickness remains the same. 

Hence, the thermal gradient in the active region is greater in a narrow 

stripe laser. 

In a thick-active-layer laser, a higher injection current is needed 

to achieve the threshold condition. Consequently, tenqperature rise in 

the active region is more significant, thus making index-guiding 

relatively important. 

In Figures 3.4 through 3.6, and 8^ at threshold are calculated 

and conqaared with the experimental data reported in Paoli [61] and 

Kirkby et al. [74]. The result, shown as a function of stripe width 

S, is in good agreement with the experiments for CW operation condition. 

The calculation shows that the CW can be reduced 1.5 ~ 3.0 |Jm from 

the pulsed operation case. Also, 8^ in CW operation is 1.5 2.5 degrees 

smaller than it is in pulsed operation. This narrowing of mode size 

is desirable for efficient coupling into the optical fiber. However, 

it should be pointed out that this advantage in optical coupling is 

minimal because most of the optical fibers have numerical apertures 

greater than 0.16 which corresponds to a full angle of 18.5® within 

which a fiber accepts light. 

In addition, narrowing occurs not only in the fundamental mode, 

which is of concern here, but also in the higher order mode in the 

lateral direction. For instance, the mode width of the first order 
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10.0 
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•O 
8 

5.0 

I 
k 
ca 
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2.5 

0 6 12 18 24 

Stripe width S (ym) 

Fig. 3.4. Near-field mode width at threshold as a function of the 
stripe width, (a) CW operation (b) pulsed operation. 
Circles represent CW experimental data from [74] 
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10.0 

d = 0.25 Tim 

» 5.0 

12 18 

Stripe width S (ym) 

Fig. 3.5. Far-field half-power angle at threshold as a function of the 
stripe width, (a) CW operation (b) pulsed operation. Circles 
represent CW experimental data from [74] 
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10.0 10.0 

0.1 0.2 0.3 0.4 

Active layer thickness d (ym) 

00 
(U 
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1 
a 
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1-4 
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*44 
I u 
a 

Fig. 3.6. CW near- and far-field mode width at threshold as functions 
of the active layer thickness, (a) 8^ for S « 24 ym 
(b) 8^ for S = 12 ym (c) for S = 12 ym (d) Wjj for S = 24 ym 
Symbols represent experimental data from [74] 
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lateral mode reduces so that the peaks of the optical intensity distri

bution move inward to the center region of the stripe. It is found 

that the distance between the two peaks of the first order mode, W^, 

is 

Wp = 2/Ck^ (3.6) 

Therefore, the degree of reduction in caused by the index-focusing 

effect is identical to that of W^. Figure 3.7 illustrates the reduction 

in Wp for CW operation. 

The higher gain constant around the center region of the stripe 

results in an enhancement of mode gain for the higher order mode such 

that the multimode operation occurs at a lower power output level. To 

£ 
illustrate the effect, AG is defined as the difference between the 

lateral fundamental and first order mode gains. That is. 

= Gq - G J (3.7) 

Using (2.140) and (2.142), 

AG^ = , (3.8) 

*0 *r S 

Equation (3.8) indicates that the first order lasing mode can easily 

be excited in a wide-stripe laser where S is large and Ag is small. 

Also, increased a^ for CW operation in comparison to that for pulsed 

operation indicates that CW operation is favorable to the onset of 
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0=0.12 MICRONS 
5=12 MICRONS 

(a) 

(b) 

0.25 0.50 0.75 1.00 1.25 0.00 

Position X in the lateral direction (pm) (x 10) 

3.7. First order mode intensity profiles for different operating 
conditions, (a) CW operation (b) gain-guiding only 
(c) pulsed operation 
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higher order modes. Figure 3.8 illustrates the mode gain, difference 

between the fundamental and first order mode as a function of stripe 

g 
width S. In many applications small AG is highly undesirable since 

this results in a kink in light output-current characteristics at a 

lower optical power level. This nonlinearity is often related to the 

onset of the higher order mode. The trend shown in Figure 3.8 is con

sistent with that described in other publications [57,75]. 

2. Effect on threshold current 

The ten^erature rise in the active region is believed to increase 

CW threshold current. On the other hand, the thermal guiding mech

anism discussed in the previous section slightly reduces threshold 

current in the range of ~5 mA for a typical laser diode. 

Assuming that this reduction is not significant when con^ared to 

CW 
the increase, the CW threshold current from Equation (1.1) can 

be written 

Oh) = ^ 
AT^^(T^)' 

To 
(3.9) 

and the average junction temperature rise AT^ is determined by (1.3), 

AT^^ (T^) = R V, (T^) (3.10) 
J ** Z J WA 11 

The average thermal resistance R2 in the active region was defined by 

(2.67). In (3.10), the joule heating was assumed to be insignificant 

in (2.69). 
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Fig. 3.8. Difference of mode gain as a function of the stripe width, 
(a) CW operation (b) pulsed operation 
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Substituting (3.10) into (3.9) yields 

I™ (V - tP = (T^) exp "2 (3.11) 

where, as stated earlier, 

P P l \ - 300OK 
= 4f300OK) exp T (1.1) 

Since the model used in this study calculates the thermal resistance 

p 
Rg and pulsed threshold current I^(300®K), it is possible to determine 

CW threshold current. Here = 1.6 V and = 125®K are used. A typical 

threshold current with higher heat sink temperature is shown in Figure 3.9. 

At a higher ambient tençerature, the laser ceases to operate in 

CW 
the CW mode. The maximum temperature for CW operation, can be 

estimated from the condition that Equation (3.11) has a solution for 

Let F be 

rci^) = i^(V ̂  
-

(3.12) 

For convenience, let (3.12) be 

F = u exp(vl^) - 1% (3.13) 
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Fig. 3.9. Threshold current increase as a function of heat sink 
temperature, (a) pulsed operation (b) CW operation 
with R2 = 50 "K/W (c) CW operation with R2 = 100 °K/W 
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where 

u = Ith' (3.14) 

R V 
V = ^ (3.15) 

o 

CW 
The condition that F = 0 has a real positive solution for is obtained 

as follows. First, 

^ = uv exp(vl^j) - 1 (3.16) 

<^^th 

cv 
The minimum of F occurs at dF/dl^^ = 0, i.e., 

= ; 4» n; c^.n) 

Next F . , the minimum of F, should be less than zero. That is, 
mm 

fmia = ; - ; ^ ° ».i8) 

or 

(3.19) 

Substituting (3.14) and (3.15) back into (3.19) yields 

i (3.20) 
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or 

p /T, - 300®K\ T 
Itj^(300®K) exp ( I I £ eR V. (3-21) 

\ 0 / 2 J 

Therefore, the maximum temperature for possible CW operation is 

= 300®K + T 2n 
max o 

To 

eR^Vj I^j^(300®K) 
(3.22) 

where e = 2.718. 

Since the solution (3.22) is a purely mathematical limit, the 

CW 
actual should be substantially lower. For instance, a significant 

amount of tençerature rise will result in thermal stress in the lattice 

structure, which in turn may cause rapid degradation. 

Nevertheless, Equation (3.22) deserves some attention. To increase 

CW 
the it is necessary to reduce thermal resistance R2 ̂ nd threshold 

p 
current at room temperature I^^(300°K). It should also be pointed out 

p 
that and I^j^(300®K) ought to be reduced simultaneously to efficiently 

CW 
increase the high temperature operation range. The dependence of T^^^ 

p 
on R^ and I^^(300°K) is illustrated in Figure 3.10. Since the tempera

ture rise ATj^ at room temperature is 

ATJ"(300®K) = R^ Vj lJj(300®K) 

~ Rg Vj I^(300«K) (3.23) 

Equation (3.22) can be written as 
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Fig. 3.10. Maximum CW operation temperature as a function of thermal 
resistance of the laser, (a) = 100 mA. (b) « 200 mA 
(c) « 300 mA 
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T™ ~ 300®K + T £ii 
max o 

e AtJ^(300®K) 
(3.24) 

Equation (3.24) indicates that "by reducing AT^ to half, it is possible 

to increase the maximum CW operation tenterature up to 0.69 T^. Since 

~ 125®K for the well-designed GaÂs/ÀlGaÂs laser, the amount is approxi

mately 87®K. The reduction of AT^ will be further discussed later in 

this section. 

CW 
An alternate way of increasing T is to increase the character-

max 

istic temperature T^. The correlation between T^ and the device structure 

has not been investigated rigorously. It has been observed, however, 

that T^ is higher for a laser diode with high energy barriers at the 

heterojunctions which offer better confinement of injected carriers. 

In InGaAsP/InP lasers, T^ is usually 40 ~ 80®K, thus creating an 

extremely strong temperature dependence for laser performance. The 

study on how to increase T^ is outside the scope of the present work. 

3. Effect on spectrum shift 

The output spectrum shift of the laser is mainly the result of a 

change in the refractive index and energy bandgap of the active region. 

Since the refractive index is tençerature dependent, as reflected in 

(2.89) and (2.90), the resonant wavelength of each Fabry-Perot mode is 

affected by the temperature of the active region. Consider the possible 

lasing wavelength in a Fabry-Perot resonator [51]: 
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where m is an integer. The temperature dependence of the wavelength 

is [17] 

dT 
= «.26) 

For GaAs, (l/L)(dL/dT) « (l/n)(dn/dT)^ is valid. Therefore, Equation 

(3.26) can be rearranged as 

 ̂= " ' . (3.27) 

i(î), 
where the refractive index n depends on the temperature T as in (2.89) 

and (2.90). Paoli [15] and Meixner and Unger [18] reported dX/dT for 

DH lasers as 2.8 X/®C and 4.3 8/®C, respectively. The shift of spectrum 

was observed both under and above the threshold. 

The CW spectrum of the laser, therefore, deviates from the pulsed 

operation as 

At = &CW - = ar (3 28) 

where and represent the wavelength at CW and pulsed operation, 

respectively. Figures 3.11 and 3.12 illustrate the spectrum shifts 

resulting from junction heating. The clamping of the junction tençera-

ture rise, as shown in Figure 3.11, was experimentally observed by 

Turley et al. [17]. Also, the linear increase of the temperature rise 
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Fig. 3.11. Junction temperature rise and corresponding emission wavelength 
increase for different injection current level, (a) T) " 60% 
(b) = 50% ^ 
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Fig. 3.12. Junction temperature rise and corresponding emission 
wavelength shift at threshold condition for various 
duty cycle, (a) d = 0.12 ym (b) d « 0.2 ym 
(c) d = 0.3 ym 
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in Figure 3.12 is consistent with the experimental observation by Paoli 

[15]. 

In many applications, such as a wavelength multiplexing, spectrum 

shift is highly undesirable. To reduce the amount of potential spectrum 

shift, it is again necessary to reduce junction heating in the laser. 

Design aspects to reduce junction heating are discussed later in this 

section. 

4. Limitation of the model 

Because of the steps of approximation employed, there are several 

shortcomings in the model under discussion. 

First, the model is not accurate for a narrow-stripe laser, espe

cially under 10 width, because the assumption that the lateral mode 

intensity is well confined inside the stripe region is not true for 

a narrow stripe width. For this kind of laser, the mode intensity 

leaks into the region where the gain distribution cannot be approximated 

as a parabolic function. A non-Gaussian fundamental mode was esçeri-

mentally observed by Asbeck et al. [76]. Functions in the form of 

cosh ^(bx) were found to be more appropriate for approximating the 

dielectric constant variation in the active layer. Here the constant 

a is in the range of 0.1 to 10. 

Next, the model does not offer an accurate solution for well-above-

threshold behavior of the laser. Because of "hole burning" caused by 

stimulated emission, the gain profile in the active region is perturbed 

in cases of higher optical power emission. For instance, the continuity 

equation in the active region (2.11) becomes [59] 
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- g(x) P(x) = 0 
n 

(3.29) 

where g(x) is the gain coefficient and P(x) is the optical flux density. 

Because of the approximations introduced, the present model was found 

to be inadequate to accommodate a self-consistent solution of Equation 

(3.29). A numerical method is desirable for solving the equation accu

rately. 

A qualitative study, based on an approach taken by Kirkby et al. 

[74] in which that g(x) P(x) was approximated by a box-shaped function at 

the center region of the stripe, showed a further clamping of the junction 

temperature rise at and above the threshold level, as was briefly 

discussed in connection with Figure 3.11. 

As shown in the previous section, temperature rise as a result of 

junction heating significantly affects the device characteristics. In 

this section, the effects of the various dimensions of the laser are 

investigated to establish a guideline for optimum thermal design. 

1. Effect of each layer thickness 

As previously discussed in Equation (3.22), it is inçortant to 

reduce both the thermal resistance and the threshold current. Generally 

speaking, reducing the layer thickness between the active region and 

the heat sink allows more efficient heat dissipation. The junction 

temperature rise depends strongly on the active layer thickness, as 

illustrated in Figure 3.13. Reducing the active layer thickness to 

B. Reduction of Junction Temperature Rise 
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the vicinity of 0.1 |jm decreases junction heating by lowering the 

threshold current without substantially changing thermal resistance. 

Further reduction of the active layer thickness, however, increases 

threshold current and junction heating because of poor optical con

finement. 

A reduction in P-Al^ ̂ Ga^ ̂ As layer thickness is very important, 

especially because of its low thermal conductivity. As shown in Figure 

3.14, junction temperature rise and thermal resistance are reduced 

significantly for a thin P-Alg gGa^ ^As layer. The optimum thickness 

of this layer is believed to be ~1 pm since a further reduction results 

in the penetration of the guided mode into the p-GaAs capping layer, 

which has a higher absorption constant. 

Figure 3.15 illustrates the dependence of temperature rise on the 

thickness of the p-GaAs capping layer. The capping layer is used for 

contacting because it is difficult to make a good ohmic contact to the 

AlGaAs layer. It is apparent that capping layer thickness should be 

minimized to improve the device's thermal property. At the present 

stage of development, the minimum thickness without downgrading the 

quality of the ohmic contact is about 1.0 ~ 1.5 pm. 

The p-contact metal layers, Ti and Pt, are usually deposited by 

evaporation or the sputtering technique. These layers are 0.05 ~ 0.1 pm 

and 0.1 ~ 0.2 (M thick, respectively. If desirable, a thicker Au contact 

may be built up by electroplating. This layer also serves as a heat 

spreader for improved heat sinking. Figure 3.16 shows the effect of 

such an Au layer on two dimensional heat dissipation. As the Au 
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Fig. 3.13. Dependence of thermal resistance and junction temperature rise 
at threshold on the active layer thickness, (a) thermal resis
tance (b) junction temperature rise at threshold 
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Fig. 3.14. Dependence of thermal resistance and junction temperature 
rise at threshold on the P-AlGaAs layer thickness, 
(a) thermal resistance (b) junction temperature rise 
at threshold 
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Fig. 3.15. Dependence of thermal resistance and junction temperature 
rise at threshold on the p-GaAs capping layer thickness, 
(a) thermal resistance (b) junction temperature rise at 
threshold 
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Fig. 3.16. Heat spreading effect by Au layer thickness, (a) Au layer 
• 10 pm thick (b) Au layer - 0.1 thick 
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thickness is increased from 0.1 |m to 10 |Jm, the junction temperature 

decreases about 0.7*K for a moderately thick laser at room temperature. 

2. Effect of stripe width and laser cavity length 

Increasing stripe width and laser cavity length drastically reduces 

the thermal resistance of the device. However, because of the propor

tional increase in threshold current, junction heating is not significantly 

reduced. 

Figures 3.17 and 3.18 illustrate the dependence of thermal resis

tance and threshold current, respectively, on stripe width S. The 

resulting junction temperature rise, shown in Fig. 3.19, is found to 

be minimal at S ~ 15 |Jm. IJnfortunately, this value falls into a range 

where there is severe nonlinearity in the light output vs. current 

characteristics. 

Since the model used here assumes no variation in the z-direction, 

the threshold condition depends on cavity length only through Equation 

(2.144). Consequently, it requires a higher current density for small 

L to achieve a threshold which will result in a slightly higher junction 

temperature. The thermal resistance and junction temperature rise are 

illustrated in Figure 3.20. 

Even though the thermal property is slightly improved by longer 

cavity length, the differential quantum efficiency decreases with 

increasing length. Biard et al. [77] derived the differential quantum 

efficiency as 

Hd = Hill + C(L/2n(|)]"̂  (3.30) 
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Fig. 3.17. Thermal resistance as a function of stripe width. 
(a) d = 0.12 ym (b) d = 0.2 ym (c) d = 0.3 ym 
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Fig. 3.19. Junction temperature rise at threshold as a function of 
stripe width, (a) d = 0.12 ym (b) d = 0.2 ym (c) d = 0.3 ym 
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Fig. 3.20. Effect of the cavity length, (a) thermal resistance 
(b) differential quantum efficiency (c) junction 
temperature rise at threshold 
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where is the internal quantum efficiency. Using a = 35 cm'^, r)^ ~ 0.9, 

and R = 0.3, the differential quantum efficiency is also illustrated as 

a function of laser cavity length in Figure 3.20. 

3. Other thermal design considerations 

As indicated in Table 3.1, the results discussed so far have been 

confined to a proton-bombarded stripe-geometry laser with p-GaAs active 

layer. In this section, qualitative discussions on material aspects and 

other stripe-geometry features are presented. 

First, the mole fraction x of AlAs for the active layer material 

Al^Gaj_^As is determined according to the desired emission wavelength. 

Typically, x is in the range of 0 to 0.1. Since the thermal conductivity 

of Al^Gaj_^As reduces from 0.45 to 0.19 W/cm-®K as x is increased from 

0 to 0.1, junction heating is expected to increase for an active layer 

with higher x. According to calculations based on the present model, 

the increase in ten^erature was insignificant. 

Next, consider other stripe-geometry structures such as contact-

stripe or planar-stripe lasers. Normally these lasers have substantial 

current spreading in the lateral direction, as previously discussed in 

section 11(A). Because of spreaded current density distribution, as 

illustrated in Figure 2.3, the width of the heating region in the active 

layer is effectively increased. As a result, the thermal gradient, as 

well as the gradient of electron concentration in the lateral direction, 

is decreased, thus reducing the thermal focusing effect for CW operation 

condition. Therefore, a slightly increased lateral mode size exists in 

these kinds of lasers in comparison to proton-bombarded stripe lasers-
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Junction heating is not reduced significantly in these lasers because 

the threshold current is increased by spreading. 

Another aspect that should be considered is the selection of heat 

sink material. At present, diamond (type lia), Cu, and Si are the 

materials generally used for a laser diode heat sink. The thermal 

conductivities of these materials are 22.0, 4.0, and 1.5 W/cm-®K, 

respectively. Naturally, diamond offers the best performance of the 

listed materials [20]. To investigate the effect of thermal conduc

tivity of the heat sink material, it is necessary to employ a more 

rigorous boundary condition at the heat sink boundary, instead of the 

ideal condition used in present model. 
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IV. CONCLUDING REMARKS 

In the present study, the subproblems of lateral current spreading, 

electron concentration, thermal distribution, and waveguiding in the 

laser cavity were solved and incorporated into a theoretical model for 

stripe-geometry double-heterostructure injection lasers. To investigate 

the effects of temperature distribution in the laser on the performance 

of the device, the model was applied to conventional gain-guiding proton-

bombarded stripe-geometry lasers. The effects on guided mode patterns, 

threshold current, and emission spectrum were quantitatively analyzed 

and discussed. The results are generally in good agreement with existing 

experimental data. Significant findings in this work include the following: 

(i) Thermal gradient existing in the lateral direction for CW 

operation condition may result in a reduction of the guided 

lateral mode widths up to 20% in comparison to those for 

pulsed operation. 

(ii) Thermal index-focusing of higher order lateral modes 

enhances their mode gains so that the onset of these modes 

is relatively favorable at lower optical power level for 

CW operation. It may result in a kink at a lower energy 

level, which is highly undesirable in many applications. 

(iii) Temperature rise in the active region caused by junction 

heating results in an increase of threshold current and 

emission wavelength for CW operation in comparison to 

those for pulsed operation. To inçrove the performance 

of the laser at higher ambient temperature, it is necessary 
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to reduce thermal resistance and threshold current 

so that the product R2 x is small. This is equivalent 

to minimizing the junction heating at room temperature, 

(iv) An optimal structure for minimal junction heating was sought 

with the model. Quantitative results were obtained which 

pertain to reduction of junction temperature rise at thresh

old by reducing the thickness of layers in between the 

active layer and heat sink. Thin active and P-inactive 

layer structure was found to be most effective in reducing 

junction heating. The effects of cavity length and stripe 

width were also investigated with the model. 

The model is applicable to different gain-guiding stripe-geometry 

lasers as well as other III-V compound material lasers such as the 

InGaAsP/InP device. 

A. Suggestion for Further Study 

It will be desirable to extend the analysis in order to investigate 

other aspects of thermal effects on the device characteristics. For 

instance, the effects on quantum noise or optical nonlinearity above 

threshold condition are likely subjects for future study. 

Although some of the theoretical results reported in the present 

study are in good agreement with existing experimental data, further 

experimental verification is desirable. Since the direct measurement 

of temperature variation is not feasible, some sort of indirect 

measurement is required. For instance, a careful measurement of 

near-field width for CW and pulsed operation may lead to information 
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on lateral thermal gradient. Also, correlation between the device 

structure and maximum CW operation temperature or threshold spectrum 

shift may offer additional information on junction heating and thermal 

resistance. 
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VII. APPENDIX 

A. Solution for Current Spreading 

Equation (2.2) is solved with the formalism used by Tonezu et al. 

[50]. Voltage drop in the p-GaAs capping layer and the P-AlGaAs inac

tive layer -dV^ is 

where p^, pg, d^, and d^ are the sheet resistances and layer thicknesses 

for the p- and P-layers. For convenience, = (d^/p^ + is 

used. 

In the condition of exp(pv^) » 1, (2.2) and (7.1) combined into 

A dl 
^ = -OR,/l) ^ (7.2) 

The solution of (7.2) is, with I^(S/2) = I^, 

K = ill - s/2 1^1 ^ S/2 (7.3) 
* 1 + 

4o 

where 

= 21/PRgI^ (2.7a) 

Current across the N-p junction between x and x + Ax, AI^(x) is obtained 

from (7.3): 
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Aly(x) = —y —^ Ax for 1*1 > S/2 (7.4) 

Given the assuaçtion that 1^(8/2) = with the stripe width S, 

...5^ 

or 

= (2LIg/pRgS)^/2 (2.3) 

Substituting (7.5) into (2.1) yields 

+ 21. - I = 0 (7 «) 

Therefore, if the total current I is known, I and I can be obtained 
o e 

from (7.5) and (7.6). For the outside stripe region, current density 

across the junction J^(x) is, from (7.4), 

Jy(x) = ̂  ̂ ^ for jxl > S/2 (2.6) 

B. Ambipolar Diffusion Constant 

The ambipolar diffusion constant is expressed as [55] 
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for p ~ n 

2D D 

"a : 5-H- (7 ») 
n p 

Since » D^, (7.8) reduces to 

: 2D^ (2.10) 
a p 

C. Hermite-Gaussian Solution 

The solution to the wave equation (2.127) is known as Hermite-Gaussian 

functions [71]. 

For convenience, substitute 

s = Ik/ (7.9) 

6^ = (7.10) 

and change the variable with | = ôx in (2.127) to reduce the equation 

to 

2 
* *2̂ ) + (E - |2) = 0 (7.11) 

dr 

2 
For 4 » £ the behavior of is dominated by the term 

exp(-l/2 %2), 

so that it is possible to assume a solution of the form 
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*(S) = H(|) exp(-l/2 ih (7.12) 

where H(x) is a polynomial of a finite order. 

Substituting #(x) from (7.12) in (7.11) leads to the equation 

"̂̂ 2̂  - 2 + (E - 1) H(4) = 0 (7-13) 
dr ^ 

It is well-known that the eigenvalues of the equation (7.13) are 

E = 2n + 1 (7.14) 

where nisO, 1, 2, 3— . Putting (7.14), the differential equation 

for the polynomials H^(|), which are known as the Hermite polynomials. 

becomes 

d\ dH 
^ 24 ̂  + 2n = 0 (7.15) 

àV 

These polynomials are conveniently derived by means of the power series 
2 

expansion of the function e ^ according to 

G(i,s) = ^ ̂  s- (7.16) 
n=0 

To generate the Hermite polynomials we use that, according to (7.l6), use 

H Ci) = ^ 
as" s=0 
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t2 JH t2 
= (-1)* — e'^ (2.129) 

Therefore, the eignefxmctions (7.12) become 

= \(|) exp(-l/2 ih (7.17) 

or 

V*) = ®eff^^^ x^) (2.128) 
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